Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
J Med Virol ; 95(5): e28788, 2023 05.
Article in English | MEDLINE | ID: covidwho-2326003

ABSTRACT

Diagnosis by rapid antigen tests (RATs) is useful for early initiation of antiviral treatment. Because RATs are easy to use, they can be adapted for self-testing. Several kinds of RATs approved for such use by the Japanese regulatory authority are available from drug stores and websites. Most RATs for COVID-19 are based on antibody detection of the SARS-CoV-2 N protein. Since Omicron and its subvariants have accumulated several amino acid substitutions in the N protein, such amino acid changes might affect the sensitivity of RATs. Here, we investigated the sensitivity of seven RATs available in Japan, six of which are approved for public use and one of which is approved for clinical use, for the detection of BA.5, BA.2.75, BF.7, XBB.1, and BQ.1.1, as well as the delta variant (B.1.627.2). All tested RATs detected the delta variant with a detection level between 7500 and 75 000 pfu per test, and all tested RATs showed similar sensitivity to the Omicron variant and its subvariants (BA.5, BA.2.75, BF.7, XBB.1, and BQ.1.1). Human saliva did not reduce the sensitivity of the RATs tested. Espline SARS-CoV-2 N showed the highest sensitivity followed by Inspecter KOWA SARS-CoV-2 and V Trust SARS-CoV-2 Ag. Since the RATs failed to detect low levels of infectious virus, individuals whose specimens contained less infectious virus than the detection limit would be considered negative. Therefore, it is important to note that RATs may miss individuals shedding low levels of infectious virus.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Amino Acid Substitution , Antiviral Agents
2.
J Med Virol ; 95(2): e28566, 2023 02.
Article in English | MEDLINE | ID: covidwho-2234665

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) caused by infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) manifests diverse clinical pathologies involving multiple organs. While the respiratory tract is the primary SARS-CoV-2 target, acute kidney injury is common in COVID-19 patients, displaying as acute tubular necrosis (ATN) resulting from focal epithelial necrosis and eosinophilia, glomerulosclerosis, and autolysis of renal tubular cells. However, whether any renal cells are infected by SARS-CoV-2 and the mechanism involved in the COVID-19 kidney pathology remain unclear. METHODS: Kidney tissues obtained at autopsy from four severe COVID-19 patients and one healthy subject were examined by hematoxylin and eosin staining. Indirect immunofluorescent antibody assay was performed to detect SARS-CoV-2 spike protein S1 and nonstructural protein 8 (NSP8) together with markers of different kidney cell types and immune cells to identify the infected cells. RESULTS: Renal parenchyma showed tissue injury comprised of ATN and glomerulosclerosis. Positive staining of S1 protein was observed in renal parenchymal and tubular epithelial cells. Evidence of viral infection was also observed in innate monocytes/macrophages and NK cells. Positive staining of NSP8, which is essential for viral RNA synthesis and replication, was confirmed in renal parenchymal cells, indicating the presence of active viral replication in the kidney. CONCLUSIONS: In fatal COVID-19 kidneys, there are SARS-CoV-2 infection, minimally infiltrated innate immune cells, and evidence of viral replication, which could contribute to tissue damage in the form of ATN and glomerulosclerosis.


Subject(s)
Acute Kidney Injury , COVID-19 , Humans , COVID-19/pathology , SARS-CoV-2 , Kidney/pathology , Acute Kidney Injury/pathology , Necrosis/pathology
3.
J Med Virol ; 2022 Oct 21.
Article in English | MEDLINE | ID: covidwho-2233227

ABSTRACT

SARS-CoV-2 NSP12, the viral RNA-dependent RNA polymerase (RdRp), is required for viral replication and is a therapeutic target to treat COVID-19. To facilitate research on SARS-CoV-2 NSP12 protein, we developed a rat monoclonal antibody (CM12.1) against the NSP12 N-terminus that can facilitate functional studies. Immunoblotting and immunofluorescence assay (IFA) confirmed the specific detection of NSP12 protein by this antibody for cells overexpressing the protein. Although NSP12 is generated from the ORF1ab polyprotein, IFA of human autopsy COVID-19 lung samples revealed NSP12 expression in only a small fraction of lung cells including goblet, club-like, vascular endothelial cells, and a range of immune cells, despite wide-spread tissue expression of spike protein antigen. Similar studies using in vitro infection also generated scant protein detection in cells with established virus replication. These results suggest that NSP12 may have diminished steady-state expression or extensive posttranslation modifications that limit antibody reactivity during SARS-CoV-2 replication.

5.
J Med Virol ; 94(3): 1154-1161, 2022 03.
Article in English | MEDLINE | ID: covidwho-1718383

ABSTRACT

Numerous reports of neuropsychiatric symptoms highlighted the pathologic potential of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its relationship the onset and/or exacerbation of mental disease. However, coronavirus disease 2019 (COVID-19) treatments, themselves, must be considered as potential catalysts for new-onset neuropsychiatric symptoms in COVID-19 patients. To date, immediate and long-term neuropsychiatric complications following SARS-CoV-2 infection are currently unknown. Here we report on five patients with SARS-CoV-2 infection with possible associated neuropsychiatric involvement, following them clinically until resolution of their symptoms. We will also discuss the contributory roles of chloroquine and dexamethasone in these neuropsychiatric presentations.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Mental Disorders , COVID-19/complications , Chloroquine/therapeutic use , Humans , Mental Disorders/complications , SARS-CoV-2
6.
Diagnostics (Basel) ; 11(7)2021 Jul 15.
Article in English | MEDLINE | ID: covidwho-1526811

ABSTRACT

The emergence and rapid proliferation of Coronavirus Disease-2019, throughout the past year, has put an unprecedented strain on the global schema of health infrastructure and health economy. The time-sensitive agenda of identifying the virus in humans and delivering a vaccine to the public constituted an effort to flatten the statistical curve of viral spread as it grew exponentially. At the forefront of this effort was an exigency of developing rapid and accurate diagnostic strategies. These have emerged in various forms over the past year-each with strengths and weaknesses. To date, they fall into three categories: (1) those isolating and replicating viral RNA in patient samples from the respiratory tract (Nucleic Acid Amplification Tests; NAATs), (2) those detecting the presence of viral proteins (Rapid Antigen Tests; RATs) and serology-based exams identifying antibodies to the virus in whole blood and serum. The latter vary in their detection of immunoglobulins of known prevalence in early-stage and late-stage infection. With this review, we delineate the categories of testing measures developed to date, analyze the efficacy of collecting patient specimens from diverse regions of the respiratory tract, and present the up and coming technologies which have made pathogen identification easier and more accessible to the public.

7.
J Infect Dis ; 223(11): 1842-1854, 2021 06 04.
Article in English | MEDLINE | ID: covidwho-1258777

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) patients manifest with pulmonary symptoms reflected by diffuse alveolar damage (DAD), excessive inflammation, and thromboembolism. The mechanisms mediating these processes remain unclear. METHODS: We performed multicolor staining for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) proteins and lineage markers to define viral tropism and lung pathobiology in 5 autopsy cases. RESULTS: Lung parenchyma showed severe DAD with thromboemboli. Viral infection was found in an extensive range of cells including pneumocyte type II, ciliated, goblet, club-like, and endothelial cells. More than 90% of infiltrating immune cells were positive for viral proteins including macrophages, monocytes, neutrophils, natural killer (NK) cells, B cells, and T cells. Most but not all infected cells were angiotensin-converting enzyme 2 (ACE2) positive. The numbers of infected and ACE2-positive cells are associated with extensive tissue damage. Infected tissues exhibited high levels of inflammatory cells including macrophages, monocytes, neutrophils, and NK cells, and low levels of B cells but abundant T cells consisting of mainly T helper cells, few cytotoxic T cells, and no regulatory T cells. Robust interleukin-6 expression was present in most cells, with or without infection. CONCLUSIONS: In fatal COVID-19 lungs, there are broad SARS-CoV-2 cell tropisms, extensive infiltrated innate immune cells, and activation and depletion of adaptive immune cells, contributing to severe tissue damage, thromboemboli, excess inflammation, and compromised immune responses.


Subject(s)
COVID-19/pathology , Lung/pathology , SARS-CoV-2/physiology , Viral Tropism , Adult , Aged , COVID-19/immunology , COVID-19/virology , Female , Humans , Immunity, Innate , Lung/cytology , Lung/immunology , Lung/virology , Male , Middle Aged , Pulmonary Alveoli/immunology , Pulmonary Alveoli/pathology , Pulmonary Alveoli/virology , Viral Tropism/immunology
10.
Int J Antimicrob Agents ; 56(2): 106037, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-648960

ABSTRACT

Ivermectin (IVM) is a robust antiparasitic drug with an excellent tolerance and safety profile. Historically it has been the drug of choice for onchocerciasis and lymphatic filariasis global elimination programs. IVM is an oral insecticide and is a standard treatment against intestinal helminths and ectoparasites. The current humanitarian crisis in Venezuela is a regional public health threat that requires immediate action. The public health system in Venezuela has crumbled because of a 70% shortage of medicines in public hospitals, low vaccination campaigns, and the mass exodus of medical personnel. Herein we discuss the repurposing of IVM to attenuate the burden imposed by the most prevalent neglected tropical diseases (NTDs) in Venezuela, including soil-transmitted helminths, ectoparasites and, possibly, vector-borne diseases, such as malaria. In addition, novel experimental evidence has shown that IVM is active and efficacious in vitro against Chagas disease, Leishmaniases, arboviruses, and SARS-CoV-2. In crisis-hit Venezuela, all these infectious diseases are public health emergencies that have long been ignored and require immediate attention. The versatility of IVM could serve as a powerful tool to tackle the multiple overlapping endemic and emergent diseases that currently affect Venezuela. The repurposing of this multipurpose drug would be a timely therapeutic approach to help mitigate the tremendous burden of NTDs nationwide.


Subject(s)
Antiparasitic Agents/therapeutic use , Drug Repositioning , Ivermectin/therapeutic use , Parasitic Diseases/drug therapy , Humans , Venezuela
11.
J Med Virol ; 92(9): 1695-1698, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-209968

ABSTRACT

The urgent need to implement and rapidly expand testing for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection has led to the development of multiple assays. How these tests perform relative to one another is poorly understood. We evaluated the concordance between the Roche Diagnostics cobas 6800 SARS-CoV-2 test and a laboratory-developed test (LDT) real-time reverse transcription-polymerase chain reaction based on a modified Centers for Disease Control and Prevention protocol, for the detection of SARS-CoV-2 in samples submitted to the Clinical Laboratories of the Mount Sinai Health System. A total of 1006 nasopharyngeal swabs in universal transport medium from persons under investigation were tested for SARS-CoV-2 as part of routine clinical care using the cobas SARS-CoV-2 test with subsequent evaluation by the LDT. Cycle threshold values were analyzed and interpreted as either positive ("detected" or "presumptive positive"), negative (not detected), inconclusive, or invalid. Statistical analysis was performed using GraphPad Prism 8. The cobas SARS-CoV-2 test reported 706 positive and 300 negative results. The LDT reported 640 positive, 323 negative, 34 inconclusive, and 9 invalid results. When excluding inconclusive and invalid results, the overall percent agreement between the two platforms was 95.8%. Cohen's κ coefficient was 0.904 (95% confidence interval, 0.875-0.933), suggesting almost perfect agreement between both platforms. An overall discordance rate of 4.2% between the two systems may reflect differences in primer sequences, assay limit of detection, or other factors, highlighting the importance of comparing the performance of different testing platforms.


Subject(s)
COVID-19/diagnosis , COVID-19/virology , Nasopharynx/virology , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/classification , SARS-CoV-2/genetics , Humans , RNA, Viral , Reagent Kits, Diagnostic , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction/instrumentation , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2/isolation & purification , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL